## Lecture #7. Modeling of chemical reactions

Key Equations and Laws in Reaction Modeling

Reaction rate equation often takes the form

$$r = k[A]^m[B]^n$$

where r is the reaction rate, k is the rate constant, and [A] and [B] are the equilibrium concentrations of reactants.

Arrhenius equation describes the **temperature** dependence of the reaction rate constant,

$$k = Ae^{-E_a/RT}$$

**Equilibrium** constant – K for a reaction:

$$K = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

## **Modeling the Haber-Bosch Process**

The Haber-Bosch process synthesizes ammonia ( $NH_3$ ) from nitrogen ( $N_2$ ) and hydrogen ( $H_2$ ), a key process in producing fertilizers.

Goal of Modeling: To predict ammonia production rate under varying conditions (e.g., high pressure, specific temperature ranges) and improve reactor efficiency.

Impact of Modeling: Using this model, the chemical industry can optimize energy usage, reduce costs, and enhance output.

**Chemical Reaction**: N<sub>2</sub>+3H<sub>2</sub>↔2NH<sub>3</sub>

The rate of this reaction is influenced by temperature, pressure, and catalyst presence.

## **Modeling Components:**

- Rate Equation: The rate law for the reaction considers the partial pressures of nitrogen and hydrogen.
- *Temperature Effects:* Using the Arrhenius equation, the model accounts for how different temperatures impact the rate.
- Equilibrium Consideration: The equilibrium constant changes with temperature, helping determine optimal conditions for maximizing ammonia yield.

Modeling the Haber-Bosch process helps illustrate the power of chemical reaction modeling in industrial applications, demonstrating how equations and reaction principles guide real-world decision-making and optimization.